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We consider (Sections 2 and 3) a problem of constructing regions of conditional stability
([1], par. 1) in the critical case given in the title, using two Liapunov — Chetaev functions
[2 and 3]. A new form of equations of perturbed motion first obtained by Kamenkov in [4]

is used here, In Section 4 a method of constructing regions of conditional stability for
systems with time delay, is presented. Finally, in Section 5, an example is given

1. Unperturbed motion is conditionally stable if it is stable under initial perturbations

constrained by conditions of the type
F@ye ooy ) =0 or  f(xy..., Zo) >0
where f is a function of perturbations Xyyeeey X and f(0,..., 0) = 0 (see [1], par. 1).

A problem of particular interest is that of defining the regions of conditional stability
in critical cases when either the unperturbed motion is unstable or wheu available criteria
are insufficient to solve the problem of stability, In these cases a problem arises of
stabilizing the unperturbed motion by suitable selection of initial perturbations. It was
Liapunov who first demonstrated the existence ([1], par. 24) and method of constructing
regions of conditional stability, when investigating a critical case of a double zero root,
for a group of solutions [5 and 7). Problems of existence of such regions were investigated
in [7 to 10]. Possibility of successful construction of such regions of conditional stability
in critical cases follows, in our opinion, from the basic Chetaev theorem [2], where for the
first time a method of solving stability problems using several Liapunov fanctions [3] is
shown. In a number of critical cases, two Liapunov-Chetaev functions were successfully
used to construct regions of conditional stability [11 and 12]. Below we use the same
method to investigate the conditional stability in the critical case of k pairs of simple,
purely imaginary roots, and a novel form of equations proposed in [4] allows us to obtain
these regions in a fairly general form.

2. Let us consider a system of equations of pertarbed motion in the case when the charac-
teristic equation of the linear first approximation system has a (n + 1)-th pair of simple
purely imaginary roots - iA,, A, = const> 0 (s =0, 1,..., n) and  roots with negative
real parts. We shall assume that the coefficients of nonlinear right-hand side terms are
periodic functions of ¢ and are all of the same period 277. Then, a possible form which the
system can take (on assumption that variables are chosen in such a way that the critical
part of the system has a canonical form), is

Z—xt+ Xy,  FoPyiYxy (2.1)

A constant 2(m + 1) x 2(n + 1) matrix Q has the form
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0— A
0 =1{Qo, Q1,..., 0.} Qs= {M ():I

Here, x is a 2(n + 1)-dimensional vector and ¥ is an [-vector; matrix P is of the order
Ix 1, is stable and constant; X (X, ¥, ¢) and Y (X, ¥, ¢) are vector functions of respective
dimensions and their components are power series in coordinates of X- and y -vectors with
coefficients periodic in ¢ and of period 277. These series begin with terms of order not
higher than second, and they converge in the region

Ix|<H, |y|<H, t>ty (H=const>0, |x|=Va2+ - +2,,%)

Let us assume that solution of the problem of constructing regions of conditional
stability for an abbreviated system [11], is independent of terms of order higher than N,

We assume that irrational numbers A, are not connected by a relation mgA g + +.. +
m, A, = 0 when |’"o| +oaee | mn| &N where m, are integers. Using the transformations of
([13], Section 97) we can reduce (2.1) to a similar form, but the expansion of vector
function Y (X, 0, ¢t) will then begin with a term of order not lower than N + 1, and terms of
the expansion of X(X, 0, t) of up to and including the N-th order will not contain ¢
explicitly. Applying further the reduction principle to the case of conditional stability
[11] we can reduce the problem of constructing regions of conditional stability to an ana-
logous problem for the abbreviated part of system (2.1)

%;"-= Ox+ XD @)+ - + XM @)+ 1), |o& ] <Alx]"" (2

Here components of the vector X (*)(x) are forms which are of r-th order in coordinates
of the vector X and A4 is a positive integer. A set of transformations given in [4] can be
used now to reduce the problem of stability of (2.2)in the case when solution of the stability
problem can be given in a finite number of terms, to investigation of stability of unper-
turbed motion of the system

dr <
2k
dls =T Z asiriz_*—rszasrdzko"' I'n n+Rs(r01---rrn7'ﬁ0)'°-)ﬁn’t)
1=20

n
<4< z—lozkigjv,s=0,1,..,,n> (2.3)

where a,, and a, are real constants and expansions R, in r; begin with terms of order not
lower than (N + 1). Later, regions of conditional stability will be constructed for (2.3).
Were these regions constructed for the system (2.2), then the problem of existence of
analogous regions for the initial system would reduce to the problem of finding a solution
for a system of nonlinear inequalities and that, as we know, would be difficult. It is for
that reason, that the initial system should be brought to the form (2.3) when regions of
conditional stability are constructed in the critical case under consideration.

8. Without loss of generality, we can construct regions of conditional stability near the
r,-axis. We can take the Liapunov-Chetaev function for (2.3) in the form
W =rd 41?2+l 2W(k) =1 —k(rd 4+ ... +1,9 3.0)
where the constant &k > 0 will be defined later.
Derivatives of (3.1) in &, by (2.3) are of the form

. n n

= p 2 1 .

a To E a()srsz"*" 7'02 2 aiOri2+ Z aiirizrj2+R( )(ro&, . -1rn2) t)
8 =0 {=1 i, j=1

n n n

aw 2 - 3 2 (2

'd_t=r-) aaosrs —'kro Zaioris—k Z aijrizrj2+R (roz,...,rnz, t)
s

i=1 i, j=1
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Here R() and R(? begin with terms of order not lower than the sixth in 7,. Then

(‘W\ =a)(k2<2r§>2 + k& 21’52 (@) + ap) 7+
i=1  j=1

&t Jw g =o =1

n
=+ 2 a'i;rizrjz + R(s) (rlzv sy rnZ, t) (3.2)
i, j==1
Function ‘%(? resembles RJ(I) and R (2, Suppose that {3.2) assumes nonpositive
values when & &= {0, }‘1] and ro? are sufficiently small. Sufficient conditions for this
can be obtained as follows.
We introduce a n-dimensional vector = {r 2,..., 1, 2} and B(k)= | by )| ™y» the
latter being a matrix whose elements are
bii (k) = 1/ 2 [2a00k* 4 k (@0; + @i0 + ao; + @ 0) -+ (ai; + a;3)]
Principal minors of the matrix B (k) will be denoted by
By (k), By (k),..., By (F)
Let us now denote by k;, a maximum value of k such, that when & & [o, k1] .
(=1 Bi() >0 (=120 (3.3)
Obviously, the requirement that the form X a”rizr, 2 be negative definite is sufficient
for conditions (3.3) to hold. Consequently, by continuity there exists an interval {0, k,]
such that when k[0, k], then the form r “B(k) r is negative definite. Suppose now, that
con ditions (3.3) are fulfilled. Then, a sufficiently small &, = const > 0 can be found such
that

. dv T
sign <—‘E)W<k)=0 == gign [r'B (k) r] (3.4)
when k &[0, k,] and 742 & h . Function (3.2) will be negative definite. When W(k =0,

dW) ’ (4) /. 2 2

e =r'Ck)r+ RY(r?,...,r% 1)

( 4t I k)= ' (3.5)
Function R(4) ig similar in form to R(3), and

C (k) = | ¢i; ka1

cis (k) =aky [k (2aoo — @0 — @j0) + (@i + @o; — ai;— a;;)]

Let us now stipulate that (3.5) assumes positive values. A sufficient condition for
this is, that principal minors C,(k,), Cylky)s ves Colky) of the matrix C(k,) satisfy the
inequalities

Citk) >0 (=1,2,...,n) (3.6)
and ry 2K k, where b, = const > 0 is sufficiently small, The functions (3.2) and (3.5) are
sign definite, provided that (3.3), (3.6) and 7, 2 £ A = min(h,, k,) all hold. Function (3.2)
is negative definite, while (3.5) is positive definite. By [3], unperturbed motion of the
system (2.3) and, consequently, [11] of (2.1), is asymptotically stable when initial per-
turbations satisfy the conditions

ro* (to) — Ky [ (t0) + ... + 1 (8] >0, re® (L) < A (3.7)

If function (3.2) assumes nonpositive values and (3.5) is positive when rg 2§ A, then
the nonperturbed motion of the system (2.3) is stable under the initial pertnrbations (3.7).

Thus, construction of regions of conditional stability {e.g. near the ro-axis), reduces
to the following.

1). We find the maximum value of k, such, that when x=[0, k] and ry 2< A, then the
function (3.2) is negative definite (e.g. when conditions (3.3) hold).

2). We stipulate that when k = k; and rq 2< h, the the function (3.5) is positive (e.g.
conditions (3.6)). Then the unperturbed motion of the system (2.3) will be asymptotically
stable under the initial perturbations {3.7).
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If the function (3.2) is always positive, then the unperturbed motion of (2.3) will be
stable under the initial perturbations (3.7).

Note 3.1. If the function (3.5) is positive when 0 < k, <k, then the region Wiky)>0
should be chosen as the region of conditional stability. Obviously, the higher the value
of k at which the above conditions hold, the wider the region of stability.

Note 3.2. When a,,> 0 and the form ) ayn er 2 is negative definite, then the follow=
ing estimate is valid for &k,
0 <k < —)1— (min (ay; -+ ) -+ Y (min]az - a5 [F — 4as0h, 0] (3.8)
4400 1 T M
provided that the expression within square brackets is positive (here A__, is the
largest eigen number of the matrix | a;,]| ™)-
Indeed, solving

,n 2 n n n
awkt | D) rit) +k Mrid X (ag; +a) it D eyt v

i=1 i=1 j=1 i, j=1

for k and applying the estimates ([14], Chapt. X, Section 7), we obtain (3.%).

4. Let a perturbed motion of a system be described by the following Eq. with time
delay
= AX () Ax (— 1)+ X [x (1), x(t—7)] (4.1)
Meaning of the symbols used was thoroughly discussed in [15], hence we shall not
repeat it here. It was shown in ([16], Section 29) that 3q. (4.1) has, in the space C[-T ol s
a corresponding differential operator Eq. !

dr, (9)
;t = Px,(0) + R [x;(0), x4 (— 7)) (4.2)
Let the Eq.
det [A— hE & Ae] =0 (4.3)

defining the spectrum of the operator P, have an (5 + 1)-th pair of purely imaginary roots
and remaining roots with negative real parts. Then, using the transformations of [15], we
can reduce (4.2) to

dv |dt = Qv + F v, 2,(0), 2, (—7)]

dz, ()
ttit = Pzt (ﬁ) -+ Z (v, z (O)’ Zy (—' ‘t), 0] (4.4)
where the operator Z[ v, Z,(0), z, (-7), 0] satisfies the inequality
|Z(v,0,0,8)|<Ljv["" (4.5)

where L = const > 0 and the integer N is defined below.
Let us now assume that unperturbed motion of the system

D = Qv+ F(v,0,0) (4.6)
is stable or asymptotically stable under initial perturbations v{t,) G (closure of the
region G contains a stagnation point) and, that it is independent of the terms of order
higher than N (in the sense of [11]). Now, if the operator Z satisfies (4.5), then the unper-
turbed motion of (4.4) is, respectively, stable or asymptotically stable under initial pertur-
bations ¥ (t,)€=G. Proof of this is analogous to that in [15). From this it follows that
when regions of conditional stability are constructed for the critical cases of systems with
time delay, results of [5, 11 and 12] can be utilised together with Section 3 of the present
work.

Note 4.1. Let Eq. (4.3) have one zero root and let the remaining roots have negative
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real parts. Then (4.6) assumes the form
“%zgv"'+g1v"‘“+---
where v is a scalar, while g, g,, ... are constants. Let g ¥ 0 and let the operator Z satisfy
the condition (4.5) (N = m).
When m is even, unperturbed motion is unstable {17) although at the same time it is
conditionally stable, namely asymptotically stable for initial perturbations gu(¢,) < 0.

5. Example 1. Let us consider conditional stability of the principal axis of a gyro-
horizon rotor with respect to the local vertical. Center of gravity of the gyro<horizon is
displaced relative to the axis of suspension. Since up to the moment of switching on the
device was arrested, we must assume that angles of deviation ¥ and & of the principal
axis of the gyroscope from the local vertical were small at the moment of release. Equa~
tions of motion of the principal axis of the gyro-horizon rotor have the form [18 and 19]

Igd" + 1Y +0y) =—Glo + MV — M Dsign ¢
IY" —IQ(§ + 0g)=GlY + M, P — M_®sign ¥
Ley + kiey = — M@ sign ey’
Ies" + ko = — M@ sign ey (5.1)

Since frictional moments are small compared with the moments M, (1) and My € of
compensating motors and have no influence on the character of the motion of the principal
axis, they shall be neglected in the following. Rotation of Earth leads to appearance of
small constant terms in (5.1) and they can be eliminated by the following substitution

¥, =%+ aq, ¢ =01 ¢ (a, ¢« = const),

Errors caused by the above assumptions are directly proportional to friction. Neglecting

nutation terms and approximating M (1) and (D by

MWV —[((1(¥—e)+ (¥ —ef+...], M P =h®—eP+h@—e)f+ ..
(where 911 ggs s by and by are constants). After a number of transformations we obtain a
set of Egs.

d;—;—:%"1[-;—(81'{-az)f12+a1"z’+az"n’]+~-- ‘irt_’_-:o, %=0 (5.2)
where A
“="19' "7 Tn

Since the right-hand part of the first Eq. of (5.2) becomes identically zero when
ry = 0, then r; either retains its initial sign orr,(¢t) = O whent > T > ¢, and r,(T)= 0.

Case r,(t) = 0 is uninteresting from the point of view of conditional stability (unpertur-
bed motion is stable when ¢ > T), hence we shall only consider the case when r,(¢t)> 0
with 7,(¢9) > 0 and ¢ > 4,.

We shall seek a region of conditional stability adjacent to the r;-axis

2W (k) = rs® — k (r® + 1)
Expressions (3.2) and (3.5) in this case, become,

dv 3 1
(T o = T T F A4 W ara b @ kel 4. (59)
(T e = — 7l (1 2R ] 123 4 (0 + ) 4 )

Let
4 —~a, <0 (5.5)

and let us choose

0<h<—2[2+1] (5.6)

az
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Terms of (5.3) and (5.4) containing expressions of higher order are such, that the signs
of (5.3) and (5.4) are defined by these terms when r32 < A, rl(to) > 0 and A = const > 0.
Then, with (5.5), (5.6) and k [0, k], the inequalities
dv daw
\_d—t>w (k)30 <_¢2t~>w (h)=0
hold. Consequently, unperturbed motion of the system (5.2) is stable under initial pertur-
bations

>0

rg (to) — Ky [r? (o) + 72 (1)1 > O, rg? (t) <k
provided that conditions (5.5) and (5.6) hold.
We should note that conditional stability is a result of intersecting constraints.

Example 2. Region of stability coinciding with that shown by Veretennikov, can be
obtained as follows.(*) Consider the functions

3
2V = Y2, 2W(k) = rg® — kro?
i=1
By (5.2) we have
av 3
<E>W(h)=o =%
Put k = 1. When W(to) = r32( to) -ry 2(20) > 0, the trajectory of solution of (5.2) cannot
intersect the surface W=r;2—r,2 = 0, since along this trajectory we have W ’= 0. Con~
sequently, when a; < -a, <0, unperturbed motion of the system (5.2) is stable under ini-
tial perturbations r,(zy) > raltg)-

ry2 [—i— (a1 + a2)r1? -+ (a1 + kay) "22] + ..., d—dvg.—z 0

*) Note. V.G. Veretennikov’s dissertation ‘‘Stability of motion in presence of three
purely imaginary roots’’, Moscow, Lumumba University of Friendship of Nations, 1966
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