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We consider (Sections 2 and 31 a problem of constructing regions of conditional stability 

([II, pa. 11 in the critical case given in the title, using two Liapunov - Chetacv functions 

[2 and 31. A new form of equations of perturbed motion first obtained by Kamenkov in [4] 

is used here. In Section 4 a method of constructing regions of conditional stability for 

systems with time delay, is presented. Finally, in Section 5, an example is given 

1. Unperturbed motion is conditionally stable if it is stable under initial perturbationa 

constrained by conditions of the type 

f (+,. . ., 2,) = 0 or f (xl,..., 4 > 0 

where f is a function of perturbations xi ,..., II, and f(O ,..., 01 = 0 (see [l] , par. 11. 

A problem of particular interest is that of defining the regions of conditional stability 

in critical cases when either the unperturbed motion is unstable or when available criteria 

are insufficient to solve the problem of stability. In these cases a problem arises of 

stabilizing the unperturbed motion by suitable selection of initial perturbations. It was 

Liapunov who first demonstrated the existence ([l] , p ar. 24) and method of constructing 

regions of conditional stability, when investigating a critical case of a double zero root, 

for a group of solutions [5 and 71. Problems of existence of such regions were investigated 

in [7 to IO]. Possibility of successfnl construction of such regions of conditional stability 

in critical cases follows, in our opinion, from the basic Chetaev theorem [2], where for the 

first time a method of solving stability problems using several Liapunov functions [3] is 

shown. In a number of critical cases, two Liapunov-Chetaev functions were successfully 

used to construct regions of conditional stability [ll and 121. Below we use the same 

method to investigate the conditional stability in the critical case of k pairs of simple, 

purely imaginary roots, and a novel form of equations proposed in [4] allows UE to obtain 

these regions in a fairly general form. 

2. Let us consider a system of equations of perturbed motion in’the case when the charac- 

teristic equation of the linear first approximation system has a (a + ll-th pair of simple 

purely imaginary roots ::I ih,, h, = const > 0 (a = 0, l,..., n 1 and 1 roots with negative 

real parts. We shall assume that the coefficients of nonlinear right-hand side terms are 

periodic functions of r and are all of the same period 2s. Then, a possible form which the 

system can take (on assumption that variablea are chosen in such a way that the critical 

part of the system has a canonical form), is 

$=Qx+X(x,y,t), g=pY+y(x,YJ) (2.11 

A constant 2(m + 11 x 2(n + 11 matrix Q has the form 
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Q = {Qo, 91,. . .v Qn>, Qs = [:,‘;] 
Here, I: is a 2(n + I)-dimensional vector and y is an I-vector; matrix P is of the order 

1 x 1, is stable and constant; X (x, y , t) and Y (X, Y, t) are vector functions of respective 

dimensions and their components are power series in coordinates of X- and y-vectors with 

coefficients periodic in t and of period 2n. These series begin with terms of order not 

higher than second, and they converge in the region 

ixl<fh IYI<~~ t>to (H=const>0, (XI =l/r,2+ . . . +12n+;) 
Let us assume that solution of the problem of constructing regions of conditional 

stability for an abbreviated system [ll] , is independent of terms of order higher than N. 

We assume that irrational numbers X, are not connected by a relation mOhO + . . . + 

m, X, = 0 when ( mO1 + . . . + 1 m, 1 <N where m, are integers. Using the transformations of 

([13] , Section 97) we can reduce (2.1) to a similar form, but the expansion of vector 

function Y (x, 0, t) will then begin with a term of order not lower than N + 1, and terms of 

the expansion of X(X, 0, t) of up to and including the N-th order will not contain t 

explicitly. Applying further the reduction principle to the case of conditional stability 

[ll] we can reduce the problem of constructing regions of conditional stability to an ana- 

logous problem for the abbreviated part of system (2.1) 

g = Qx + X(2) (x) + . . . + XcN) (x) + cp (x, % I cp (x, 0 I< A Ix INtl (2.2) 

Here components of the vector X(‘)(X) are forms which are of r-th order in coordinates 

of the vector x and A is a positive integer. A set of transformations given in [4] can be 

need now to reduce the problem of stability of (2.2)in th e case when solution of the stability 

problem can be given in a finite nttmber of terms, to invemtigation of stability of unper- 

turbed motion of the system 

drs 
-=Ts 
dt iao 

(4~ &k&V, s=O,l, . . . . n) 
i=o 

(2.3) 

whare amI attd 0. are real constants and expansions R, in rt be& with terms of order not 
lower than (N + 1). Later, regions of conditional stability will be constructed for (2.3). 

Were these regions constrncted for the ayatem (2.21, then the problem of existence of 

analogous regions for the initial system would reduce to the problem of finding a solution 

for a system of nonlinear Inequalities and that, as we know, would be difficnlt. It is for 

that reason, that the initial system should be brought to the form (2.3) when regions of 

conditional stability are constracted in the critical case ander consideration. 

1. Without loss of generality, we can construct regions of conditional stability near the 

r,-axis. We can take the Liapunov-Chetaer fnnction for (2.3) in the form 

2V =rz +rt +...+rn2, 2W (k) = ro2 - k (rlz + . . . . + r,,2) (3.1) 

where the constant k >/ 0 will be defined later. 

Derivatives of (3.1) in t, by (2.3) are of the form 

dV ” 
- = rr~“F, aoera2 + TO2 i UiOri2 + 5 dt ai;Fi2Fj2 f I?(‘) (7’0’, . . . , rn2, t) 

i=l i, j=l 

dW 
dt = r’J - kro2 i aiOrF - k i Uijri2Tj2 + Rc2)(ro2, a s a, rn2, t) 

i=l i,j=l 
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Bere ~(1) and R(2) begin with terms of order not lower than the sixth in re, Then 

dV \ 

X-I W(k)=0 

+ Jij ui,r~ri2 + I$(‘) (r12, . . ., rn2, t) (3.2) 
i, j==l 

Fan&ion *n(3) resembles R (1) and R (2). Suppose that (3.2) assumes nonpositive 

values when k E [O, kt] and r o 2 are sufficiently small. Sufficient conditions for this 

can be obtained as follows. 

We introduce a n-dimensional vector r = (I tz,..., rs 2 1 and B(k) = 11 b,j (k) Il”xt the 
latter being a matrix whose elements are 

bij (k) = ’ / 2 [24~&~ + k (aoi + ai~ + a0.i + a,~) I- (aij + aji)I 
Principal minors of the matrix B (k) will be denoted by 

B, (Qc), & tkt,..., & (9 
Let us now denote by kt, a maximum value of k such, that when k EE [O, kt] . 

(--)iBi(k)>O (i=l,%...,n) (3.3) 

Obviously, the requirement that the form x oltrt 2r z be negative definite is sufficient , 

for conditions (3.3) to hold. Consequently, by continuity there exists an interval [O, k,] 

such that when kEf0, kt], then the form t ‘B(k) r is negative definite. Suppose now, that 

conditions (3.3) are fulfilled. Then, a sufficiently small 8t = const > 0 can be found such 

that 
dV 

sign dt W(k)+ ( J 
= sign [ r’B (k) r] (3.4) 

whenkEfO,kt] androZ 4 i5,. Function (3.2) will be negative definite. When II’& t) = 0, 

= r’C (kl) r + R(4f (Q’; - . ., ra2, t) 
Wy(ks)=O (3.5) 

Function R(4) ia simiLsr in form to R(3), and 

C (h) = 11 cij @I) 11” 

cij (kl) = ‘/a ICI [kl(2a00 - U~O - ajo) + (UO~ + ‘oj - ‘ii - ‘.;;I I 

Let us now stipulate that (3.5) assnmes positive values. A sufficient condition for 

this is, that principal minors Cl&,), C,#t)t l -, Cn@t) of the matrix Cfkt) Satif& the 
inequalities 

Ci(kl)>O (i= ‘,‘*.‘., ‘) (3.6) 

and ro 24 h, where h, = const > 0 is sufficiently small. The functions (3.2) and (3.5) are 

sign definite, provided that (3.3), (3.6) and ro 2 4 h = min(8t, ha) all hold. Function (3.2) 

is negative definite, while (3.5) is positive definite. By [3], nnpartnrbed motion of the 

system (2.3) and, consequently, [II] of (2.1) , is asymptotically stable when initial per 

turbations satisfy the conditions 

To2 00) - k, [r12 (to) + . . . + ma @,)I > 0, ro2 (to) < h (3.7) 
If function (3.2) assumes nonpositive values and (3.5) is positive when ru 26 h, then 

the nonperturbed motion of the system (2.3) is stable under the initial perturbations (3.7). 

Thus, construction of regions of conditional stability (e.g. near the to-axis), reduces 

to the following. 

1). We find the maximum value of k, such, that when kE[O, kl] and to 2 4 & then the 
function (3.2) is negative definite (e.g. when conditions (3.3) hold). 

2). We stipulate that when k = k, and r, 26 h, the the function (3.5) is positive (e.g., 

conditions (3.6)). Then the unperturbed motion of the system (2.3) will be asymptotically 

stable under the initial perturbations (3.7). 
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If the function (3.2) is always positive, then the unperturbed motion of (2.3) will be 

stable under the initial perturbations (3.7). 

Note 3.1. If the function (3.5) is positive when 0 <k, <k,, then the region WV(k,) > 0 

should be chosen as the region of conditional stability. Obviously, the higher the value 

of k at which the above conditions hold, the wider the region of stability. 

Note 3.2. When uuu> 0 and the form c cij r, 2’1 2 is negative definite, then the follow- 

ing estimate is valid for k, 

0 < kl < $--& [+n (Q,i + Qio) -1 i/On? I Qi, t Q&l II2 - 4c~o~,,,a,l 

provided that the expression’within square brackets is positive (here &,a, is the 

(3.81 

largest eigen number of the matrix (1 ol,]] nl)* 

Indeed, solving 

fork and applying the estimates ([14], Chapt. X, Section 7), we obtain (3.“). 

4. Let a perturbed motion of a system be described by the following Eq. with time 

delay 

dx 
- = Ax (t) + A,x (t - %) + x [x(t), x (t - z)l 
dt 

(4.1) 

Meaning of the symbols used was thoroughly discussed in [15], hence we shall not 

repeat it here. It was shown in ([16], Section 29) that 3q. (4.1) has, in the space C 

a corresponding differential operator Eq. 
r-7,01 * 

dlt (6) 
- = px, (6) + R 1% 69, xt (- t)l 

dt 

Let the Eq. 

det [A - hE f Age-h51 = 0 (4.3) 

defining the spectrum of the operator P, have an (n + l)-th pair of purely imaginary roots 

and remaining roots with negative real parts. Then, using the transformations of [15], we 

can reduce (4.2) to 

dv/dt = Qv + F[v, z,(O), z,(-r)] 
dz,@) 
- = P%(6) -12 iv, Zf(O), z,(--), 61 

where the operator Z[?, Z,(O), Z, (-7),6] satisfies the inequality 

(4.4) 

IZ (v, 0, 0, 6) I <L 1 v lNfl (4.5) 

where L = const > 0 and the integer N is defined below. 

Let us now assume that unperturbed motion of the system 

$ = Qv + F (v, 0, 0) (4.6) 

is stable or asymptotically st able under initial perturbations V (t,) EG (closure of the 

region G contains a stagnation point) and, that it is independent of the terms of order 

higher than N (in the sense of [ll]). N ow, if the operator 2 satisfies (4.5), than the unper- 

turbed motion of (4.4) is, respectively, stable or asymptotically stable under initial pertur- 

bations V (t,)EG. Proof of this is analogous to that in 1151. From this it follows that 

when regions of conditional stability are constructed for the critical cases of systems with 

time delay, results of 15, 11 and 123 can be ntilised together with Section 3 of the presedt 

work. 

N o t e 4.1. Let Eq. (4.3) have one zero root and let the remaining roots have negative 
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real parts. Then (4.6) assumes the form 
dV 
- = gum _t g#+l + . . . 
dt 

where u is a scalar, while g, g,, -~... are constants. Let g # 0 and let the operator Z satisfy 

the condition (4.5) (IV = m). 
When m is even, unperturbed motion is unstable [ 171 although at the same time it is 

conditionally stable, namely asymptotically stable for initial perturbations g&o) < 0. 

5. Example 1. Let us consider conditional stability of the principal axis of a gyro- 

horizon rotor with respect to the local vertical. Center of gravity of the gyro-horizon is 
displaced relative to the axis of suspension. Since up to the moment of switching on the 

device was arrested, we must assume that angles of deviation \y and 6 of the principal 
axis of the gyroscope from the local vertical were small at the moment of release. Equa- 
tions of motion of the principal axis of the gyro-horizon rotor have the form [la and 191 

Z,6” + ZQ (Y’ + UC) = - G16 f M+(l) - M_(l) sign 6’ 

Z,Y*‘-- ZQ(W + oBj = GPP + M+@) - M_@)sign Y” 

Zlel” + k,sl = - Mc3) sign eI’ 

Zzei’ + kze2 = - M14) sign e2 (5.1) 

Since frictional moments are small compared with the moments M+(t) and M+(‘) of 

compensating motors and have no influence on the character of the motion of the principal 

axis, they shall be neglected in the following. Rotation of Earth leads to appearance of 
small constant terms in (5.1) and they can be eliminated by the following substitution 

VP, A ‘Y + a, & = 6 + B (a, 8 = const). 

Errors caused by the above assumptions are directly proportional to friction. Neglecting 
nutetion terms and approximating M+(t) and M+c2) by 

M+(‘)=-[q1(Y-e~)s+qa(Y-e~)5+...], ~+‘2’=h,(6-~e2)s+hz(6-e~)5+... 

(where ql, q2# . . . . h, and h, are constants). After a number of transformations we obtain a 

set of Eqs. 

drl 3 
dt=pZ 

[ 

L(a, + a2)r12 + aga2 + a2r22 + . . . 2 = 0, 
1 

d$ = 0 (5.2) 

where 

al=-Q1, ht 
151 =*=-IG 

Since the right-hand part of the first Eq. of (5.2) becomes identically zero when 
rl I 0, then rI either retains its initial sign or t,(t) s 0 when t >/ T >/ t ,, and t,(T) = 0. 

Case r I(t) = 0 is uninteresting from the point of view of conditional stability (unpartar- 
bed motion is stable when t >/ T), hence we shall only consider the case when r,(t) > 0 
with rl(tO) > 0 and L >/:,. 

We shall seek a region of conditional stability adjacent to the rJ-axis 

2W (k) = rs’ - k (rf + r,‘) 

Expressions (3.2) and (3.5) in this case, become. 
dV ( ) 3 
iz w (Ir)=fJ 

a - rg 
4 

(1 + 2k) atJr12 + (01 + k~o)r2~] + . . . (5.3) 
I 

Let 

and let us choose 

+(I +2k) ar]r,2+(q+ kar)r22 + . . . (5.4) 

al< - sa < 0 (5.5) 

(5.6) 
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Terms of (5.3) and (5.4) containing expressions of higher order are such, that the signs 

of (5.3) and (5.4) are defined by these terms when r3 2 < h, rl(to) > 0 and h = const > 0. 

Then, with (5.5), (5.6) and k E[O, k,l, the inequalities 

aw ii,;o <O, (i~)~v (k,)p 
hold. Consequently, unperturbed mbt;on of the system (5.2) is stable under initial pertur- 

bations 

ra2 (to) - kl Ir12 (toI -I- pa2 (Ql > 0, G2 00) d h 

provided that conditions (5.5) and (5.6) hold. 

We should note that conditional stability is a result of intersecting constraints. 

E x mm p 1 e 2. Region of stability coinciding with that shown by Veretennikov, can be 

obtained as follows.(*) Consider the functions 

2v = i Tit, 
i=l 

2n;(k) z r32 - kr2 

By (5.2) we have 

Put k = 1. When W(t,) = r J2(t,,) - r2 ‘6,) > 0, the traje ctory of solution of (5.2) cannot 

intersect the surface I = r3 2 - r 2 2 = 0, since along this trajectory we have W ‘I 0. Con- 

sequently, when at < -az < 0, unperturbed motion of the system (5.2) is stable under ini- 

tial perturbations r,(t,) > rZ(tO). 

*) N ate. V.G. Veretennikov’s dissertation “Stability of motion in presence of three 

purely imaginary roots”. Moscow, Lumumba University of Friendship of Nations, 1966 
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